

Tetrahedron Letters 48 (2007) 7950-7952

Tetrahedron Letters

A facile synthetic method of α-quaternary-β,γ-unsaturated aldehydes via the stereoselective 1,4-elimination and α-regioselective Ferrier reaction

Eiji Tayama* and Ryo Hashimoto

Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

Received 27 August 2007; accepted 10 September 2007

Available online 12 September 2007

Abstract—The 1,4-elimination reaction of 2-substituted-(2Z)-4-methoxy-O-alkenyl acetals with n-butyllithium is shown to afford the 2-substituted-(1Z,3E)-O-1,3-dienyl acetals in high stereoselectivities. The Ferrier reaction of the O-1,3-dienyl acetals thus obtained provides the corresponding α -quaternary- β , γ -unsaturated aldehydes in excellent yields with high α -regioselectivities. © 2007 Elsevier Ltd. All rights reserved.

1-Alkoxy-1,3-dienes are useful synthetic intermediates that function as reactive diene components. Several applications for organic synthesis have been reported, for example, dienolate equivalents for the vinylogous aldol reactions¹ and Ferrier-type reactions,² or as diene components for Diels-Alder reactions.³ We recently reported that a facile and stereoselective synthetic method of O-1,3-dienyl acetals via the 1,4-elimination of (2Z)-4methoxy-O-alkenyl acetals with n-butyllithium⁴ and the regioselective Ferrier reaction of O-1,3-dienyl acetals thus obtained by organoaluminum complexes to give α -substituted- β , γ -unsaturated aldehydes. ^{2a} With this method in hand, we have now explored the feasibility of our reactions using 2- or 3-substituted-(2Z)-4-methoxy-O-alkenyl acetals, which yield the 2- or 3-substituted-1,3-dienyl acetals by 1,4-elimination, and highly functionalized α -substituted- β , γ -unsaturated aldehydes by the regioselective Ferrier reaction.

First, we performed the reaction of (2Z)-4-methoxy-2-methyl-1-(2'-tetrahydropyranyloxy)oct-2-ene $(1\mathbf{a})^5$ with n-butyllithium (1.5 equiv) in diethyl ether at 0 °C (Table 1, entry 1). The corresponding 1,4-elimination product, 2-methyl-1-(2'-tetrahydropyranyloxy)oct-1,3-diene $(2\mathbf{a})$ was obtained at 90% yield with high (1Z,3E)-stereoselectivity [(1Z,3E):(1E,3E)=>20:1]. To define the scope

Keywords: 1,4-Elimination; 1,3-Dienyl acetals; 1-Alkoxy-1,3-dienes; Ferrier reaction; α -Quaternary- β , γ -unsaturated aldehydes.

and limitation of the 2-substituted-1,3-dienyl acetal forming reaction, we prepared a series of substrates **1b-h** and carried out their reactions with *n*-butyllithium. The corresponding *O*-(2-tetrahydropyranyl)- or (1-eth-oxyethyl)-1,3-dienyl acetals **2b-f** were obtained with excellent yields and perfect levels of (1*Z*,3*E*)-stereoselectivity (entries 2–6). Interestingly, the reaction of 4-unsubstituted substrate **1g** (entry 7) provided **2g** (77% yield) as derived by the initial deprotonation on the 1-ethoxyethoxy-bearing methylene in preference to the methoxy-bearing methylene. Our method is also useful for the preparation of *O*-benzyloxymethyl (BOM) derivative **2h** (entry 8).

The stereochemistry of 2a was assigned by 1H NMR comparison with an authentic sample, which was obtained by Diels-Alder reaction (Scheme 1). The Diels-Alder reaction of a 4:6 mixture of (1E,3E)- and (1Z,3E)- $2a^6$ with 1,4-naphthoquinone was carried out in refluxing benzene for 15 h. One isomer resulted in the corresponding Diels-Alder adduct 3a in 43% yield, whereas another isomer was recovered in 51% yield as an almost single stereoisomer. The stereochemistry of the reacted 1,3-dienyl acetal 2a was assigned as (1E,3E), and the recovered 1,3-dienyl acetal 2a was assigned as (1Z,3E). The stereochemistries of 2b-h were determined analogously to those of 2a.

Next, we prepared 3-substituted-(2Z)-4-methoxy-O-alkenyl acetals 4 and performed their reactions with n-butyllithium to expand the scope of the present

^{*} Corresponding author. Tel./fax: +81 25 262 7741; e-mail: tayama@gs.niigata-u.ac.jp

Table 1. 1,4-Elimination reaction of 2-substituted-(2Z)-4-methoxy-O-alkenyl acetals 1

$$R^{1}O$$
 R^{2}
 R^{3}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}

Entry	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3		Yielda (%)
1	THP ^b	Me	n-C ₄ H ₉	a	90
2	$\mathrm{THP^b}$	n-C ₄ H ₉	n - C_4H_9	b	94
3	EE^c	Me	n-C ₄ H ₉	c	99
4	EE^c	n-C ₄ H ₉	n-C ₄ H ₉	d	93
5	EE^c	n - C_4H_9	i - C_3H_7	e	96
6	EE^c	n-C ₄ H ₉	CH_3	f	98
7	EE^c	n - C_4H_9	Н	g	77
8	BOM^d	n-C ₄ H ₉	n-C ₄ H ₉	h	72

^a Isolated yield.

THPO

$$n-C_4H_9$$
 $(1E,3E)-2a$
 (1.0 equiv)
 $benzene$
 $reflux, 15 \text{ h}$
 $(1Z,3E)-2a$
 $(1Z,3E)-2a$

Scheme 1. Preparation of authentic sample (1Z,3E)-2a.

THPO

R1

R1

R1

Et₂O

0 °C, 2 h

5a, 5b

(mixture of 3 isomers)

R1 =
$$n$$
-C₄H₉ (a) 16% yield

= Me (b) 15% yield

Scheme 2. 1,4-Elimination reaction of 3-substituted-(2Z)-4-methoxy-O-alkenyl acetals 4.

method (Scheme 2). However, the reactions were unsuccessful. The yields of the 1,3-dienyl acetal 5 were lowered compared to the 2-substituted substrate 2. A three isomers mixture of 1,3-dienyl acetals 5 was obtained.⁸

Our previous studies determined that the (1Z, 3E)-stereoselective 1,4-elimination reaction of (2Z)-4-metho-xy-O-alkenyl acetals in ether proceeds via an initial

Figure 1. Proposed mechanism for 1,4-elimination of 2- and 3-substituted-(2Z)-4-methoxy-O-alkenyl acetals.

precoordination of the two alkoxy-oxygens to n-butyl-lithium followed by E2-like elimination (Fig. 1).⁴ The reaction of 2-substituted-(2Z)-4-methoxy-O-alkenyl acetals 1 would proceed via the intermediate A, which leads to (1Z,3E)-stereoisomers. However, in the case of the 3-substituted substrate 4, the precoordination intermediate B would be sterically unfavorable because of the steric repulsion between 3-substituent (\mathbb{R}^3) and 4-substituent (\mathbb{R}^4). The 1,4-elimination of 4 may proceed through various types of unfavorable intermediates resulting in a mixture of three isomers.

Finally, we carried out the Ferrier reaction of 2-substituted-*O*-1,3-dienyl acetals **2** promoted by organoaluminum complexes such as aluminum tris(2,6-diphenylphenoxide) (ATPH) or methylaluminum bis(2, 6-di-*tert*-butyl-4-methylphenoxide) (MAD) (Scheme 3).

R = Me (a), $-10 \,^{\circ}$ C, 1 h, 97% yield (dr = 6 : 4)^a R = n-C₄H₉ (b), $-10 \,^{\circ}$ C, 1 h, 96% yield (dr = 5 : 5)^a

R = Me, R' = n-C₄H₉ (**c**), -78 °C, 1 h, 98% yield (dr = 6 : 4)^b R = R' = n-C₄H₉ (**d**), -40 °C, 1 h, 88% yield (dr = 6 : 4)^b R = n-C₄H₉, R' = H (**q**), -78 °C, 1 h, 86% yield (dr = 7 : 3)^b

Scheme 3. Ferrier reaction of 2-substituted-O-1,3-dienyl acetals **2**: a *rel*-(2R,2'S)/rel-(2R,2'R). b *rel*-(2R,1'S)/rel-(2R,1'R).

^b THP = 2-tetrahydropyranyl.

 $^{^{}c}$ EE = 1-ethoxyethyl.

^d BOM = benzyloxymethyl.

The reaction of **2a** in the presence of ATPH gave the corresponding α -quaternary- β , γ -unsaturated aldehyde⁹ **6a** in 97% yield [rel-(2R,2'S)/rel-(2R,2'R) = 6:4]. Various types of α -quaternary- β , γ -unsaturated aldehydes **6b**–**d** were obtained in excellent yields with high α -regioselectivities. Interestingly enough, 4-unsubstituted dienyl substrate **2g** also showed an equally high α -regioselectivity.

In summary, the 1,4-elimination reaction of 2-substituted-(2Z)-4-methoxy-O-alkenyl acetals with n-butyllithium proceeded to yield 2-substituted-1,3-dienyl acetals with high (1Z,3E)-stereoselectivities. Application for the Ferrier reaction of the 2-substituted-1,3-dienyl acetals afforded the corresponding α -quaternary- β , γ -unsaturated aldehydes in excellent yields with high α -regioselectivities.

Acknowledgments

This work was supported by a Grant for Promotion of Niigata University Research Projects and a Grant-in-Aid for Scientific Research on Priority Areas 'Advanced Molecular Transformations of Carbon Resources' from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2007.09.049.

References and notes

- For review: Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G. Chem. Rev. 2000, 100, 1929–1972.
- (a) Tayama, E.; Isaka, W. *Org. Lett.* **2006**, 8, 5437–5439;
 (b) Inui, M.; Hosokawa, S.; Nakazaki, A.; Kobayashi, S. *Tetrahedron Lett.* **2005**, 46, 3245–3248.
- 3. Oppolzer, W. In *Comprehensive Organic Synthesis*; Trost, B. M., Ed.; Pergamon: Oxford, 1991; Vol. 5, Chapter 4.1.
- (a) Tayama, E.; Sugai, S. Synlett 2006, 849–851; (b) Tayama, E.; Sugai, S.; Hara, M. Tetrahedron Lett. 2006, 47, 7533–7535.
- 5. Prepared from tetrahydro-2-(2-propynyloxy)-2*H*-pyran (50% overall yield): (i) *n*-BuLi, THF, ClCOOEt, -78 to -10 °C; (ii) Me₂CuLi, THF, -78 °C; (iii) Red–Al, toluene, 0 °C; (iv) MnO₂, hexane, rt; (v) *n*-BuLi, THF, -78 °C; (vi) NaH, MeI, THF, 0 °C to rt.
- 6. Prepared by Horner–Wittig reaction of *trans*-oct-2-en-2-one and diethyl[(2-tetrahydropyranyloxy)methyl]phosphonate (45% overall yield): (i) LDA, THF, *trans*-oct-3-en-2-one, -78 °C to rt; (ii) *t*-BuOK, THF, rt. For more details, see Supplementary data.
- 7. Stewart, C. A., Jr. J. Org. Chem. 1963, 28, 3320-3323.
- 8. Similar yields and selectivities were observed using 3-butyl or *O*-(1-ethoxyethyl) derivatives.
- For preparations of α-quaternary-β,γ-unsaturated aldehydes: (a) Deng, X.-M.; Sun, X.-L.; Tang, Y. J. Org. Chem. 2005, 70, 6537–6540; (b) Mino, T.; Fukui, S.; Yamashita, M. J. Org. Chem. 1997, 62, 734–735; (c) Hiroi, K.; Nakazawa, K. Chem. Lett. 1980, 9, 1077–1080.
- 10. The relative stereochemistry of **6c** was determined by ¹H NMR comparison with an authentic sample prepared via diastereoselective alkylation of α-substituted-β-hydroxyesters. The relative stereochemistries of **6a**, **6b**, **6d**, and **6g** were determined by analogy to the ¹H NMR chemical shifts of **6c**. For more details, see Supplementary data.
- 11. ATPH is efficient for *O*-(2-tetrahydropyranyl) derivatives. For the *O*-(1-ethoxyethyl) derivatives, we used MAD because of the reasonable price. See also, Ref. 2a.